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1 Significance

Linking properties of the external world, and of sensory stimuli, to how neurons and animals respond has

proven an important approach to understanding how the brain works. Much is known about how nervous

systems respond to simple stimuli. Less is known about how systems respond during real-world viewing.

Using data from two human stereo-depth discrimination experiments, we develop a new approach that

reveals how distinct features of natural scenes and images contribute to perceptual performance. Results

show that stimulus-by-stimulus variation has highly consistent effects on different people. The approach

should have broad application to other animal models and other sensory-perceptual tasks.
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2 Abstract

Stimulus variability—a form of nuisance variability—is a primary source of perceptual uncertainty in every-

day natural tasks. How do different properties of natural images and scenes contribute to this uncertainty?

Using binocular disparity as a model system, we report a systematic investigation of how various forms

of natural stimulus variability impact performance in a stereo-depth discrimination task. With stimuli

sampled from a stereo-image database of real-world scenes having pixel-by-pixel ground-truth distance

data, three human observers completed two closely related double-pass psychophysical experiments. In

the two experiments, each human observer responded twice to ten thousand unique trials, in which twenty

thousand unique stimuli were presented. New analytical methods reveal, from this data, the specific and

nearly dissociable effects of two distinct sources of natural stimulus variability—variation in luminance-

contrast patterns and variation in local-depth structure—on discrimination performance, as well as the

relative importance of stimulus-driven-variability and internal-noise in determining performance limits.

Between-observer analyses show that both stimulus-driven sources of uncertainty are responsible for a large

proportion of total variance, have strikingly similar effects on different people, and—surprisingly—make

stimulus-by-stimulus responses more predictable (not less). The consistency across observers raises the

intriguing prospect that image-computable models can make reasonably accurate performance predictions

in natural viewing. Overall, the findings provide a rich picture of stimulus factors that contribute to human

perceptual performance in natural scenes. The approach should have broad application to other animal

models and other sensory-perceptual tasks with natural or naturalistic stimuli.
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3 Introduction

An ultimate goal for perception science is to understand and predict how perceptual systems work in the

real world. One approach to achieving this goal is to probe the system with naturalistic stimuli—stimuli

that are derived from the natural environment, or bear substantial similarities to them. By examining

how stimulus variation characteristic of real-world scenes affects stereo-depth discrimination, we show that

performance patterns are similar across different humans, and we partition the effects of distinct stimulus

and scene factors on performance—with some surprising results. Further, natural-stimulus variation causes

a high degree of stimulus-by-stimulus consistency across observers, consistency that, in principle, could be

used to develop and constrain future image-computable models of human perceptual performance.

There is a long tradition of investigating visual performance in human and animal models using simple

stimuli and simple tasks. Recent years have been marked by the realization that simple stimuli and tasks

may be insufficiently complex to understand how vision works in the real world. A number of recent efforts

have taken steps to make the tasks during which psychophysical and neurophysiological data are collected

more ecologically valid, while using traditional stimuli (e.g. gratings, Gabors). Some such efforts have, for

example, removed the requirement that animals maintain fixation, allowing them fixate freely on stimuli

presented on a monitor (Yates et al., 2023). Here, we use a traditional forced-choice task, and focus effort

on probing perceptual performance with stimuli that are more similar to those encountered in real-world

viewing situations (see Discussion).

The use of natural or naturalistic stimuli, however, poses challenges. With such stimuli, it is difficult

to maintain the rigor and interpretability that has characterized classic research. One important source of

difficulty is the sheer number of factors that inject variability into natural retinal images. Some of these

factors depend on the environment: the textural patterns on surfaces, the 3D structure of those surfaces, and

how the objects that own those surfaces are arranged in 3D space. Other factors are due to the organism and

its relationship to the environment, including the optical state of the eyes and the posture and movements

of the eyes, head, and body relative to objects in the scene. All of these factors combine to generate many

different retinal images, all of which are associated with a particular value of a distal property (e.g. depth)

of interest. Such natural-stimulus variability—a form of "nuisance stimulus variability"—impacts neural

response (Baddeley, 1997; Felsen & Dan, 2005; A. Iyer & Burge, 2019), and is an important reason that

estimation and discrimination of behaviorally-relevant latent variables (e.g. depth, size, 3D orientation) is

difficult. In order to perform well, perceptual systems must select for proximal stimulus features that provide

information about the latent variable of interest, while generalizing across (i.e. maintaining invariance to)
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stimulus variation that is not useful to the task. In natural viewing, the computations run by the vision

system should minimize, to the maximum possible extent, the degree to which natural-stimulus variability

causes variability in human estimation and discrimination in each critical task (Geisler, 1989; Burge &

Geisler, 2011; Burge & Geisler, 2012; Burge & Geisler, 2014; Burge & Geisler, 2015; Sebastian et al., 2015,

2017; Burge, 2020; Chin & Burge, 2020).

Using binocular disparity as a model system, we report a systematic investigation of how various

forms of natural-stimulus variability impact performance in a depth discrimination task. To approximate

natural-stimulus variation, thousands of stimuli were sourced from a natural stereo-image database with

co-registered laser-based range data at each pixel using constrained sampling techniques. The sampled

stimuli were used to probe human depth-from-disparity discrimination and to determine distinct properties

of natural scenes that place limits on human performance. With appropriate experimental designs and

data analysis methods, the natural (random) variation across the uncontrolled aspects of the stimuli in

each condition provides one with the ability to determine the limits that distinct types of nuisance stimulus

variability place on performance.

Two experiments were conducted using the double-pass psychophysical paradigm (Chin & Burge, 2020;

Burgess & Colborne, 1988; J. Gold et al., 1999; Neri & Levi, 2006). In contrast to typical 2AFC forced-

designs, in which hundreds of responses are collected for each unique stimulus (or trial), double-pass ex-

periments collect two responses for each of two presentations of hundreds of unique stimuli (or trials) in

each condition. The conditions of the experiments were defined by different fixation disparities and levels of

local-depth variation. These aspects of the stimuli were parametrically manipulated and tightly controlled.

Other aspects of the stimuli—luminance-contrast patterns and local-depth structure—were allowed to vary

randomly (as they do in natural viewing). We develop new analytical methods that allow us to infer, from

the double-pass data, i) the relative importance of natural-stimulus variability and internal noise in limit-

ing performance, and ii) the specific impact that distinct sources of natural-stimulus variability—luminance

pattern variability and local depth variability—have on performance.

Several key findings emerge. First, we replicate a performance pattern from the classic literature:

discrimination thresholds increase exponentially as targets move farther in depth from fixation. Second,

we show that performance limits are increasingly attributable to stimulus variability (rather than internal

noise) as the stimuli used to probe performance have more local-depth variability. Third, we show that two

distinct types of natural-stimulus variability—luminance-pattern variation and local-depth variation—have

distinct and largely separable effects on human performance. Fourth, we find that as stimulus variation
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becomes more severe, the absolute impact of that stimulus-by-stimulus variation on performance becomes

more severe and also becomes more uniform across human observers.

4 Materials and Methods

4.1 Human Observers

All observers had normal or corrected-to-normal acuity. Two of the observers were authors, and the third

was naive to the purpose of the study. All observers provided informed written consent in accordance with

the declaration of Helsinki. The Institutional Review Board at the University of Pennsylvania approved all

protocols and experiments.

4.2 Data and Software

Psychophysical experiments were performed in MATLAB 2017a using Psychtoolbox version 3.0.12. Stimulus

sampling and data-analyses were also performed in MATLAB 2017a. Data from this study is available upon

reasonable request.

4.3 Apparatus

Stimuli were presented on a custom-built four-mirror haploscope. The haploscope displays were two identical

VPixx ViewPixx 23.9 inch LED monitors. Displays were 53.3×30.0 cm in size, with 1920×1080 pixel

resolution and a native 120 Hz refresh rate. The maximum luminance of each display was 106 cd/m². After

light loss due to mirror reflections, the effective luminance was 94 cd/m². The mean background gray level

of the displays was set to 40 cd/m². The gamma function was linearized over 8 bits of gray level.

All mirrors in the haploscope were front-surface mirrors, to eliminate secondary reflections. The mirrors

most proximal to the observer were housed in mirror cubes with 2.5 cm circular viewports. The viewports

were positioned 65 mm apart, a typical human interpupillary distance. The openings of the cubes limited

the field of view to approximately 16° of visual angle.

The optical and vergence distances of the displays were set to 1.0 m. This distance was verified both

by standard binocular sighting techniques and via laser distance measurement. At this distance, each pixel

subtended 1.07 arcmin. A chin and forehead rest stabilized the head of each observer.

6



4.4 Stimuli

Stereo-image patches (32×32 pixels each for the left- and right-eye patches) were sampled from 98 large

stereo-images (1920×1080 pixels) of the natural environment with co-registered laser range data at each

pixel (Burge et al., 2016). Sampling procedures are described below. Stimuli subtended 1° of visual angle,

were spatially windowed by a raised cosine function, and were presented dichoptically. When viewed

monocularly, the windowing caused the stimulus to fade into the mean luminance surround. When viewed

dichoptically—assuming the patch had uncrossed disparity, which it always did in these experiments—the

windowing caused the stimulus to appear behind a fuzzy aperture. Uncrossed fixation disparities (i.e.

uncrossed disparity pedestals) of appropriate size were introduced at the stereo-patch sampling stage by

cropping the patch from its source image, assuming that a virtual pair of eyes was fixating a point along

the cyclopean line of sight in front of the sampled scene location (A. V. Iyer & Burge, 2018). This created

stereo-pairs that are geometrically identical to the retinal images that would have formed on the eyes of an

observer standing in the original scene. The size of the virtual fixation error was set such that the uncrossed

disparity would have the desired value when the stereo-patch was viewed in the haploscope rig.

Each stereo-image patch in the dataset was labeled by the amount of local-depth variation in the imaged

scene region, as quantified by disparity-contrast. Disparity-contrast is given by the root-mean-squared

difference between the vergence demand of the central corresponding point and the vergence demands of

the points in the local surround

cδ =

√√√√√
∑
x

(v(x)− v0)2 w(x)∑
x
w(x)

, (1)

where w is the raised cosine weighting function that windows the image, x = {x, y} is the spatial location

of each pixel, v0 is the vergence angle that is required to fixate the 3D-scene point specified by the center

pixels of the left- and right-eye image patches, and v(x) is the vergence angle required to fixate the scene

points corresponding to the other pixels in the patch. Note that the difference in vergence demand v(x)

- v0 is simply equal to the relative disparity between the center pixel and the other pixels in the patch.

The vergence demand at each point in the patch was computed for an observer viewing the stimulus at

the viewing distance and direction set by the experimental rig (i.e. 1 meter away, straight-ahead) across

patches that were 32x32 pixels in size.

Each stereo-image patch was contrast fixed to the median root-mean-squared (RMS) contrast (i.e.

7



crms=0.3) in the natural-stimulus dataset. RMS contrast is given by

crms =

√√√√√
∑
x

c2(x) w(x)∑
x
w(x)

, (2)

where c is a Weber contrast image, w is the raised cosine weighting function that windows the image, and

x = {x, y} is the location of a given image pixel.

4.4.1 Stimulus sampling

Left- and right-eye image patches from a natural-scene database were sampled (i.e. centered) on corre-

sponding points (Burge et al., 2016). Because the stereo-photographs were of natural scenes, each local

patch was characterized by a different luminance pattern and by some amount of local-depth variability

(see Fig. 1B). Corresponding points in the image were determined directly from the range data (see A. V.

Iyer and Burge, 2018).

Stimuli were sampled with known amounts of fixation disparity (i.e. pedestal disparities), relative to

the corresponding points, up to a maximum of 5 arcmin of uncrossed disparity and known amounts of

disparity-contrast. Patches were screened to ensure that the disparity variability within the central region

of each patch equaled the nominal fixation disparity within a tight tolerance (see below). Note that because

depth varies naturally across any given patch, this central region was the only region of the patch that was

guaranteed to equal the nominal fixation disparity. Disparity-contrasts were constrained to be either "high"

(0.025-0.117 arcmin) or "low" (0.393-1.375 arcmin). To ensure that each stereo-image patch was unique,

patches were not allowed to overlap radially in their source images by more than 10 pixels; this level of

overlap was rare.

If the viewing geometry (i.e. distance and direction) of stimulus presentation in an experimental rig

does not match the viewing geometry during stereo-image patch sampling, the stereo-specified 3D structure

of presented stimulus will be distorted relative to the geometry of the original scene (Held & Banks, n.d.).

Stereo-image patches were sampled from all distances and directions, but presented patches at a fixed

distance and direction (i.e. one meter away, straight-ahead). Hence, the stereo-specified depth structure

during presentation was distorted from that in the original 3D scene. It is possible to prevent these

distortions, but only at the cost of distorting the left- and right-eye luminance images. We opted to preserve

luminance structure rather than the details of the stereo-specified 3D geometry of the original natural scene.

Throughout the article, the disparity-contrast values that are used to characterize the stereo-specified depth
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variation in each stereo-image patch were set by each patch as it was viewed by the participants in the

experimental rig.

4.4.2 Stimulus vetting

Before being included in the experimental stimulus set, stereo-image patches underwent a vetting procedure.

The vetting procedure had two primary aims.

The first, most fundamental aim was to ensure accurate co-registration between the luminance and

range information in the half-images of each patch. Accurate co-registration was critical for all aspects of

the experiment, because the values of the independent variables (i.e. disparity and disparity-contrast) are

determined directly from the range data. Although inaccurate co-registration was rare, it was present in a

non-negligible proportion of patches. In such cases, the luminance data that observers would have used to

estimate disparity would have been inconsistent with the range data used by the experimenters to compute

the nominal ground truth disparity. Hence, failing to identify and exclude poorly co-registered patches

would mar the accuracy of the results. Potential stereo-image patches were manually vetted by viewing

each patch in the experimental rig with onscreen disparities that were nominally uncrossed, zero, or crossed

with respect to the screen. Patches that did not pass scrutiny (i.e. that had the wrong depth relationship

relative to the screen) were discarded from the pool. The manual vetting procedure was conducted until

thousands of unique stimulus patches without co-registration problems were obtained.

The second aim of the vetting procedure—which was enforced programmatically—was to ensure that the

center of each stereo-image patch was a coherent target for depth estimation (see above). We required that

the most central (1/8° of visual angle ≈ 4x4 pixel) region of each patch contained neither a substantial change

in disparity (i.e. a disparity-contrast greater than 20 arcsec), or a half-occluded region. Pixels containing

half-occluded regions were allowed outside of the most central region. Because regions that are half-occluded

have undefined disparity, stimuli including a half-occluded region have undefined disparity-contrast. For

patches containing half-occlusions, disparity-contrast was computed by excluding pixels corresponding to

half-occluded regions of the scene from the calculation. We did not exclude stimuli with half-occlusions

from the dataset because they occur commonly in natural viewing (A. V. Iyer & Burge, 2018).

4.4.3 Stimulus flattening

From the sampled set of natural stereo-image patches—which contain both natural- luminance-pattern

variation and natural-depth variation—we also created a "flattened"—but otherwise matched—dataset
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of stereo-image patches. To convert patches with natural-depth structure into patches with flat depth

structure, either the left- or right-eye half-image patch (chosen by random) was replaced by a duplicate

of the remaining right- or left-eye half-image patch. This procedure ensured that there is essentially zero-

disparity variation across the patch, such that the disparity pattern specifies a fronto-parallel plane.

4.5 Procedure

Stimuli were presented at the center of a fixation cross-hairs reticle. The reticle was positioned in the

center of a circular, 4° diameter, mean-luminance gray area. The circular area was surrounded by a mean-

luminance 1/f noise field. The reticle itself consisted of a 2° diameter circle punctuated by hairs jutting

outwards at the cardinal and ordinal directions. Hairs were 1° in length and 4.2 arcmin in thickness.

Stimuli were presented using a two-interval forced choice (2IFC) procedure. Each interval had a duration

of 250 ms. The inter-stimulus interval was also 250 ms. In one interval of each trial, a stimulus with

a standard disparity was presented. In the other interval, a stimulus with a comparison disparity was

presented. The order in which the standard or comparison stimulus was presented was randomized.

The task was to report, with a key press, whether the stimulus in the second interval appeared to be

nearer or farther than the stimulus in the first interval. Feedback was provided after each response: a high

frequency tone indicated a correct response; a low frequency tone indicated an incorrect response.

Psychometric data was collected in a fully-crossed design with disparity pedestal and disparity-contrast

as the independent variables. For each combination of disparity pedestal and disparity-contrast, the

method of constant stimuli was used for stimulus presentation. Disparity pedestals were defined by

one of five standard disparities: δstd = [−11.25, −9.38, −7.5, −5.63, −3.75] arcmin. Five equally

spaced comparison disparities were paired with each standard. Disparity-contrast levels were defined as

δC = [0.025—0.117, 0.393—1.375] arcmin, which were labeled "low" and "high" disparity-contrasts

respectively. Stimuli in the low disparity-contrast conditions were just-noticeably non-flat to observers.

Stimuli in the high disparity-contrast conditions appeared quite noticeably non-uniform in depth. The high

disparity-contrast condition contained stimuli that were easily fusible in most cases.

The comparison disparity pedestals and disparity-contrast levels were chosen based on pilot data. Com-

parison disparities were chosen with the aim that proportion comparison chosen would be approximately

10% on the low-end and 90% on the high-end across the low disparity-contrast condition. Data with 0%

and 100% comparison chosen provides no useful information for estimating decision-variable correlation

(see subsection "Partitioning the variability of the decision variable" below). Before collecting the data,
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each observer completed practice sessions to ensure that discrimination performance was stable.

To simulate the stimulus variability that occurs in natural-viewing conditions, a unique natural stereo-

image patch was presented on each interval of each trial. This feature of the experimental design represents

a departure from more standard experimental designs, in which either the same stimulus is presented many

times each or stimulus differences (e.g. different random dot stereograms) are considered unimportant and

not analyzed.

Experiments were conducted using a double-pass experimental paradigm. In double-pass experiments,

observers respond to the exact same set of unique trials two times each. Double-pass experiments enable

one to determine the relative importance of factors that are repeatable across trials (e.g. external stimulus

variation), and factors that vary randomly across trials (e.g. internal noise).

Two double-pass experiments were conducted. In one, all stimuli had natural-depth variation. In the

other, all stimuli were "flattened" (see sub-subsection "Stimulus flattening" above). Importantly, both

double-pass experiments used the same scene-locations (and hence, near-identical luminance contrast pat-

terns). This design feature allowed us to examine the relative importance of luminance-pattern-driven

variability and disparity-contrast-driven variability in the decision variable (see subsection "Partitioning

the externally-driven component of the decision variable" below).

Over the course of each double-pass experiment, 10,000 unique stimuli were presented in 5000 unique

trials of each double-pass experiment. Five hundred trials were collected in each of ten conditions (5

standard disparities ×5 comparison disparities ×2 disparity-contrasts). Data was collected in 100-trial

blocks (i.e. twenty repeats per comparison disparity level per block). The order in which the blocks were

run was randomized and counterbalanced across conditions. Two double-pass experiments were conducted,

for a total of 20,000 trials per observer.

4.6 Psychometric fitting

Cumulative Gaussian functions were fit to the psychometric data in each condition using maximum like-

lihood methods. Discrimination thresholds were calculated from the fitted functions. The relationship

between the sensitivity index d′ (i.e. d-prime) and percent the comparison chosen PC in a two-interval

two-alternative forced-choice experiment is given by

PC = Φ

(
d′√
2

)
, (3)
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where Φ is the cumulative normal function, with d′ given by

d′ =
∆δ

σ2
T

, (4)

where ∆δ = δcmp − δstd is the difference between the comparison and standard disparities (i.e. the mean

value of the decision variable), and σ2
T is the variance of the underlying decision variable. (In accordance

with standard practices, we assume that decision variable variance is constant for all comparison-disparity

levels at a given standard-disparity level—that is, pedestal disparity. The psychometric data is consistent

with this assumption.)

The discrimination threshold T is set by choosing a criterion d-prime that defines the just-noticeable

difference. In a two-interval, two-alternative forced-choice (2AFC) experiment, threshold is given by

T =
√
σ2
T d′crit, (5)

where d′crit is the criterion d-prime. For computational simplicity, we assume a criterion d-prime of 1.0 such

that threshold level performance corresponds to the 76% point on the psychometric function. Thresholds

are thus given by the change in the disparity required to go from the 50% to the 76% points on the

psychometric function.

Discrimination thresholds were computed from data across both passes of the experiment. When fitting

psychometric data across one or both double-pass experiments (see below), thresholds were constrained

to change log-linearly across disparity pedestals. Under this constraint, discrimination thresholds in the

conditions of a double-pass experiment associated with a given disparity-contrast are specified by

T = σT = exp(mδstd + b), (6)

where δstd is the standard pedestal disparity, m and b are the slope and y-intercept of the line charac-

terizing the log-thresholds. This constraint is consistent the predictions of normative models of disparity

discrimination with natural stimuli, previously reported patterns in psychophysical data (Blakemore, 1970),

and the log-linear patterns in the current threshold data (see Figs. 4 and 7). The maximum-likelihood

estimates of the parameters defining threshold under the constraint were fit across all conditions having a
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given disparity-contrast. They are given by

m̂, b̂ = arg max
m, b

∑
s

Ls([exp(mδ
(s)
std + b)]2), (7)

where Ls is the likelihood of the raw response data in the sth condition, under the assumption that percent

correct is governed by a cumulative normal function with mean parameter equal to the sth disparity pedestal

δ
(s)
std and variance parameter equal to [exp(mδ

(s)
std + b)]2. Finally, the variance of decision variable at each

pedestal disparity was obtained by plugging these estimated parameters into Section 4.6.

4.7 Modeling the decision variable

The decision variable can be modeled as a difference between disparity estimates from the stimuli presented

on each trial

D = δ̂cmp − δ̂std, (8)

where δ̂std is the estimate from the stimulus with the standard disparity and δ̂cmp is the estimate from

the stimulus with the comparison stimulus. In accordance with signal detection theory, if the value of the

decision variable is greater than zero (and if the observer sets the criterion at zero), the observer will select

the stimulus with the comparison disparity. If the decision variable is less than zero, the observer will select

the stimulus with the standard disparity.

The decision variable can be more granularly modeled as the sum of two independent random variables.

The first random variable accounts for stimulus-driven variability (i.e. variance that is due to nuisance

stimulus variability), and has its value set by the particular stimulus (or stimuli) that are presented on a

given trial. The second random variable accounts for internal noise, and has its value set randomly on each

trial. In a double-pass experiment, across the two presentations of a particular unique trial in a double-pass

experiment (i.e. the presentation in the first pass and the presentation in the second pass), the value of the

decision variables are given by

D1 =V +W1,

D2 =V +W2,

(9)

where V is stimulus-driven contribution to the decision variable, W is a sample of internal noise, and the

subscripts index on which pass the trial was presented. Across the two passes of the double-pass experiment,
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the decision variables can be described as a single two-dimensional random variable D = [D1, D2]
⊺.

The stimulus-driven component of the decision variable on a single pass of the experiment V ∼ N (δcmp−

δstd, σ2
E) is modeled as unbiased and normally distributed with stimulus-driven variance σ2

E . The noise-

driven component of the decision variable W ∼ N (0, σ2
I ) is modeled as zero-mean and normally distributed

with variance σ2
I . If the external (i.e. stimulus-driven) and internal (i.e. noise-driven) components of the

decision variable are independent, as we assume they are here, the total variance of the decision variable

on a given pass is given by the sum of the internal and external components

σ2
T = σ2

E + σ2
I . (10)

4.8 Decision-variable correlation

The correlation of the decision variable across passes is given by the fraction of the total variance that is

accounted for by external (i.e. stimulus-driven) factors, the factors that are repeated across passes. Hence,

decision-variable correlation is given by

ρ =
σ2
E

σ2
T

=
σ2
E

σ2
E + σ2

I

, (11)

where σ2
E is the component of the decision-variable variance accounted for by external (i.e. stimulus-

driven) factors and σ2
I is the component of the decision-variable variance accounted for by internal factors

(i.e. noise). In order to partition stimulus- and internally-driven sources of variability, we combine estimates

of decision-variable correlation and discrimination thresholds (see below). Decision-variable correlation is

an integral factor in determining the repeatability of observer responses across passes of a double-pass

experiment.

4.8.1 Estimating decision-variable correlation

Decision-variable correlation was estimated via maximum likelihood from the pattern of observer response

agreement between passes. The log-likelihood of n-pass response data, under the model of the decision

variable, is

Ln(θθθ) =
∑
j

Nj logLj
n(θθθ), (12)
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where θθθ represents the parameter(s) to be estimated, j is a specific pattern of response, Nj represents the

number of times a specific pattern of response was measured. For a double-pass experiment (n = 2), the set

of response patterns are given by the combination of all possible combinations of responses for each pass.

The number of patterns of binary responses is N = 2n. For 2IFC experiment, N = 22 = 4, with patterns of

responses j ∈ {[−,−], [−,+], [+,−], [+,+]}. Here, we use + to indicate that the comparison was chosen

and − indicates the comparison was not chosen.

We model the joint decision variable as a vector drawn from a multivariate normal distribution D ∼

N (x;m,Σ) with a mean vector m and covariance matrix Σ. The likelihood of a particular pattern of

response is given by

Lj
2(θθθ) =

∫
sj(c1,c2)

N (x;m,Σ) dµ(x), (13)

where integration is in respect to probability measure µ and sj is a subset of the support S. Here, sj

defines the integration limits for a specific pattern of response j and is a function of the decision criterion

on each pass c ∈ {c1, c2}. Specifically, the integration limits for each dimension/pass are determined by

the values of response pattern. For a response ri at pass i, where the comparison is not chosen (ri = −),

P(Di < ci) and the integration limits are [−∞, ci]. Likewise, for comparison chosen (ri = +), P(Di ≥ ci)

with integration limits [ci,∞].

It is computationally convenient to estimate decision-variable correlation with a normalized joint decision

variable Dz = [Dz
1, D

z
2]

⊺ such that it has unit variance on each pass. Normalizing the joint decision variable

sets the normalized means equal to d′. Normalizing the joint decision variable also confers a practical

advantage in converting the covariance matrix into a correlation matrix so that it can be fully characterized

by decision-variable correlation.

The normalized mean vector and normalized covariance (i.e. correlation) matrix associated with the

normalized joint decision variable are given by mz = Mm, and Σz = MΣM, where the superscript z

indicates a normalized parameter, and Σz is the correlation matrix (i.e. the covariance matrix of the

normalized joint decision variable). The normalizing matrix is given by M = diag( 1
σσσT

), where σσσT is a vector

of the standard deviation of the joint decision variable D in each pass, and where the diag(.) function
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converts a vector into a matrix with the vector-values on the diagonal. The correlation matrix is given by

Σz =

1 ρ

ρ 1

 . (14)

Substituting parameters associated with the normalized decision variable into equations, yields mathemat-

ically equivalent expressions of the likelihoods:

Lj
2(θθθ) =

∫
sj(cz1,c

z
2)

N (xz;mz,Σz) dµ(xz). (15)

We also assume that the criteria associated with the normalized decision variable on all passes equals

zero, which is justified by the data and by the two-interval, two-alternative forced choice design. In the

general case, when this assumption is not made, the decision criteria should also be normalized—that is, the

normalized criteria are given by cz = Mc. Thus, when analyzing double-pass experimental data under the

indicated assumptions, decision variable correlation θθθ = ρ is the only parameter that needs to be estimated.

Specifically, the maximum-likelihood estimate of decision variable correlation is given by

ρ̂ = arg max
ρ

∑
j

Nj logLj
2(ρ), (16)

where Np ∈ {N−−, N−+, N+−, N++} is the number of each type of response agreement or disagreement,

and Lp ∈ {L−−, L−+, L+−, L++} is the likelihood of the data given an underlying decision variable

distribution specified by the decision variable correlation. The likelihoods are given by

L−−
2 =

cz1∫
−∞

cz2∫
−∞

N (xz;mz,Σz) dµ(x1, x2),

L−+
2 =

cz1∫
−∞

∞∫
cz2

N (xz;mz,Σz) dµ(x1, x2),

L+−
2 =

∞∫
cz1

cz2∫
−∞

N (xz;mz,Σz) dµ(x1, x2),

L++
2 =

∞∫
cz1

∞∫
cz2

N (xz;mz,Σz) dµ(x2, x2).

(17)
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4.8.2 Determining the variances of the decision-variable components

With an estimate of the total variance of the decision variable and an estimate of decision-variable corre-

lation, one can estimate the variances of the externally- and internally-driven components of the decision

variable. Plugging Eq. (5) into Eq. (11) and rearranging yields an estimate of the variance the externally-

driven component of the decision variable

σ̂2
E = ρ̂σ̂2

T . (18)

Plugging this estimate into Eq. (10) and rearranging gives an expression for the internally-driven component

of the decision variable

σ̂2
I = σ̂2

T − σ̂2
E . (19)

This series of analytical steps was performed for the two double-pass experiments that were conducted: one

with natural and one with flattened local-depth variation.

4.9 Partitioning the externally-driven component of the decision variable

To estimate the contributions of luminance-pattern- and local-depth-driven (i.e. disparity-contrast-driven)

variability to the decision variable, performance was compared across the stimulus sets with natural and

flattened local-depth variation. Recall that the flattened stimulus set effectively eliminates local-depth-

variability from the natural-stimulus set—because the disparity pattern in each flattened stimulus specifies

a fronto-parallel plane—while leaving luminance contrast patterns essentially unaffected. Hence, because

the luminance-pattern-driven component should be essentially the same in both stimulus sets, and because

the local-depth-driven component is eliminated in one of the two stimulus sets, an appropriate comparison

should reveal the impact of each factor.

To compare performance across the flattened and natural-stimulus sets, we simultaneously analyzed all

data from both double-pass experiments using a quasi-quadruple-pass analysis (see below).

4.9.1 Expanded decision variables and correlations

Before explaining in detail how to estimate the contribution of two distinct stimulus-driven factors it is

necessary to show how the decision variable depends on these factors in each of the two double-pass experi-

ments. The decision variables in the experiments with flattened and natural-stimuli are given, respectively,
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by

V† =L, (20)

V∗ =L+B, (21)

where L and B denote the the luminance-pattern- and local-depth-driven components of the decision

variable, respectively, and † and ∗ indicate, respectively, whether the decision variable corresponds to

stimuli that have been flattened (2nd double-pass experiment) or have natural-depth profiles (1st double-

pass experiment). (Note that, for the simplicity of mathematical development, we present the equations

here in the Methods section in the opposite order from which the experiments were conducted and presented

in the Results section).

Plugging these expanded forms for the externally-driven component of the decision variable into Eq. (9)

yields expanded expressions for the decision variables in each of the two double-pass experiments

D† =

V†︷ ︸︸ ︷
(L )+W†,

D∗ =(L+B)︸ ︷︷ ︸
V∗

+W∗.
(22)

Clearly, the presence or absence of the local-depth-driven component of the decision variable was the only

component that differed across the two double-pass experiments.

Decision-variable correlations across passes in the flattened and natural double-pass experiments, in

terms of these new variables, are given by

ρ†† =
σ2
E†

σ2
T †

=
σ2
L

σ2
L + σ2

I†
,

ρ∗∗ =
σ2
E∗

σ2
T∗

=
σ2
L + σ2

B + 2cov[L,B]

σ2
L + σ2

B + 2cov[L,B] + σ2
I∗
,

(23)

where σ2
T † and σ2

T∗ are variabilities of the decision variable, where σ2
L and σ2

B are the luminance-pattern

and local-depth-driven contributions to response variability, σ2
I†

is the internal noise when only luminance-

pattern-driven variability is present, σ2
I∗ is the internal noise when both luminance-pattern- and local-depth-

driven variability is present, †† indicates comparisons across between passes in the double-pass experiment

with flattened-depth profiles (i.e. the second double-pass experiment), and ∗∗ indicates comparisons across

passes in the double-pass experiment with natural-depth profiles (i.e. the first double-pass experiment).
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Clearly, there are five unknowns—σ2
L, σ2

B, cov[L,B], σ2
I†

, and σ2
I∗

—and, including the threshold equations

from each of the two double-pass experiments (see Eqs. (5) and (10)), only four equations. However, by

computing decision-variable correlation between passes across each of the two double-pass experiments, a

fifth equation is obtained. Specifically,

ρ†∗ =
σ2
L + cov[L,B]

σT†σT∗
=

σ2
L + cov[L,B]√

(σ2
L + σ2

I†
)
√

(σ2
L + σ2

B + 2cov[L,B] + σ2
I∗
)
, (24)

where †∗ indicates the cross-double-pass-experiment comparisons. Now, with five equations and five un-

knowns, the equations can be solved.

4.9.2 Estimating decision-variable correlation with expanded decision variables

A novel quasi-quadruple-pass analysis was used to simultaneously estimate ρ††, ρ∗∗, and ρ†∗, the decision-

variable correlations across all four passes of the two double-pass experiments. The quasi-quadruple pass

analysis is distinguished from an "ordinary" quadruple-pass analysis because, in an ordinary analysis, all

four passes present identical trials. Here, only some of the four passes present trials with identical stimuli

(e.g. the flattened stimuli were similar but not identical to the stimuli with natural depth variation). The

quasi-quadruple pass analysis allows the three distinct decision variable correlations to take on different

values. An ordinary analysis does not allow this flexibility.

For a quadruple-pass (whether quasi or not), the likelihood function is obtained takes the form Ln(θθθ) =∑
j Nj logLj

n(θθθ) from Eq. (12) above, but across sixteen response patterns

j ∈



[+ + ++],

[+ + +−], [+ +−+], [+−++], [−+++],

[+ +−−], [+−+−], [+−−+], [−++−], [−+−+], [−−++],

[−−−+], [−−+−], [−+−−], [+−−−],

[−−−−]


.

The individual likelihoods for these response patterns are extended from Eq. (15), such that

Lj
4(θθθ) =

∫
sj(cz1,c

z
2,c

z
3,c

z
4)

N (xz;mz,Σz) dµ(xz), (25)

with integration limits sj as described in the text proceeding Eq. (13). Here, an example likelihood is the
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region in the space in which the decision variable is positive on all four passes, given by

L++++
4 (θθθ) =

∞∫
cz1

∞∫
cz2

∞∫
cz3

∞∫
cz4

N (xz;mz,Σz) dµ(xz1, x
z
2, x

z
3, x

z
4). (26)

Just as with the double-pass analysis described above, it is convenient to normalize the joint decision

variable D in quadruple-pass analyses via application of a normalization matrix M = diag( 1
σσσT

). In a

quasi-quadruple-pass analysis, the vector σσσT of standard deviations is given by

σσσT =



σT †

√
σT †σT∗

√
σT∗σT †

σT∗


, (27)

with resulting in correlation matrix

Σz =



1 ρ†† ρ†∗ ρ†∗

ρ†† 1 ρ†∗ ρ†∗

ρ†∗ ρ†∗ 1 ρ∗∗

ρ†∗ ρ†∗ ρ∗∗ 1


. (28)

With estimates i) of the total variance of the decision variables from the two double-pass experiments (i.e.

σ2
T∗

and σ2
T†

) which are obtained from the thresholds, and ii) of the three decision-variable correlations

between passes within and across the two double-pass experiments (i.e. ρ††, ρ∗∗, and ρ†∗ ), the values of

the five unknown parameters can be determined.

Estimates of decision-variable correlation are obtained by maximizing the likelihood of the data under

the model. Specifically,

ρ̂††, ρ̂†∗, ρ̂∗∗ = arg max
ρ††, ρ†∗, ρ∗∗

∑
j

Nj logLj
4(ρ††, ρ†∗, ρ∗∗). (29)

We show in the next section how to solve for the contributions of the two distinct natural stimulus-driven

factors—i.e. L and B—to the variance of the decision variable.
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4.9.3 Determining the variability of the stimulus-driven components

We modeled natural-stimulus variability as being due to two distinct factors: luminance-pattern variability

L and local-depth-variability B. To obtain maximum-likelihood estimates of the variance of the luminance-

pattern-driven component of the decision variable σ̂2
L, the variance of the local-depthnzz-driven component

σ̂2
B, and the covariance between these two components ˆcov[L,B], from the maximum-likelihood estimates

of the three decision-variable correlations (see Eq. (29)), we rearranged Eqs. (23) and (24) for the variables

in question. Specifically,

σ̂2
L = ρ̂††σ̂

2
T†
, (30)

ˆcov[L,B] = ρ̂†∗σ̂T† σ̂T∗ − σ̂2
L, (31)

σ̂2
B = ρ̂∗∗σ̂

2
T∗ − σ̂2

L − 2 ˆcov[L,B]. (32)

The maximum likelihood estimates indicated in Eqs. (30) and (32) are plotted in the main text Figure 10.

The maximum-likelihood estimate of the covariance between the two components (31) tended towards zero,

and can safely be ignored.

4.9.4 Fitting constraints

Model parameters were fit via the quasi-quadruple-pass analysis under a pair of constraints. The first

constraint was that the disparity-discrimination thresholds used in normalization matrix M (see Eq. (27))

were set to values obtained from linearly constrained threshold fits (see Eq. (7)). The second constraint

was that the scaled covariance (i.e. correlation) between the luminance-driven and local-depth-driven

components of the decision variable was constrained to lie between -1 and 1. In particular,

−1 <
cov[L,B]

σLσB
< 1, (33)

where the scaling factor is given by the product the standard deviations of the two stimulus-driven com-

ponents. Given that most estimates of interaction term were near zero, we re-fit the model with the more
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stringent constraint that this interaction term equaled zero. Eqs. (23) and (24) make clear that setting the

interaction term equal to zero forces the different decision-variable correlations to have more constrained

values with respect to one another than they would be constrained to have otherwise. The log-likelihoods

of the models with their best-fit parameters were essentially identical, regardless of whether the interaction

term was set equal to zero or not. Non-zero values of the interaction term thus carried little explanatory

value.

4.10 Between-observers decision-variable correlation

To derive an expression for between-observers decision-variable correlation, the stimulus-driven component

of the decision variable is assumed to be the sum of two independent random variables. (Note that this

expansion of the stimulus-driven component is not inconsistent the expansion used in Eq. (21) above.) One

is a stimulus-driven component that is shared across observers; the other is a stimulus-driven component

that is private to each observer. Specifically,

D1 =

V1︷ ︸︸ ︷
(S1 + P1)+W1,

D2 =(S2 + P2)︸ ︷︷ ︸
V2

+W2,
(34)

where S1 and S2 are stimulus-driven components that are identically driven by the stimulus across observers

(i.e. the components are proportional S1 ∝ S2, or identical up to a scale factor S1 = aS2), P1 and P2 are

the stimulus-driven components that are private to (i.e. uncorrelated between) each observer, and W1 and

W2 are the respective noise-driven components (see Eq. (9)). The total variance of the stimulus-driven

component of the decision variable Vi in each subject i is given by σ2
Ei = σ2

Si+σ2
Pi, the sum of the variances

in the shared and private components. (Note the overloaded subscript notation. Here, subscripts to denote

different subjects. Earlier, subscripts to denoted different passes through the experiment.) Between-subjects

decision-variable correlation is given by

ρ12 =
cov[S1, S2]√

σ2
T1σ

2
T2

, (35)

where σ2
T1 and σ2

T2 are the total variance of the decision variables in each observer. Of course, these variances

include the effects of internal noise. To eliminate the impact of internal noise in the two observers, one

can divide through by the square-roots of the within-observer decision-variable correlations to obtain the
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partial correlation

ρ12·W =
ρ12√
ρ11ρ22

=
cov[S1, S2]√

σ2
E1σ

2
E2

, (36)

where σ2
E1 and σ2

E2 are the variances of the stimulus-driven component of the decision variable for each

observer, and ρ11 and ρ22 are the within-observer decision-variable correlations for each observer. This

partial correlation ρ12·W specifies the degree to which the stimulus-driven components in two different

observers are correlated with each other. High levels of this partial correlation indicate that stimulus-

driven components of the two observer are highly similar.

4.10.1 Estimating between-observers correlations

Estimation of between-observers decision-variable correlation within a given experiment also utilized the

quasi-quadruple pass methodology, with a few small but important differences. The vector of standard

deviations that determined the normalizing matrix is given by

σσσT =



σT1

√
σT1σT2

√
σT2σT1

σT2


, (37)

where subscripts 1 and 2 indicate observer identity, rather than the experiment number. The resulting

correlation matrix is given by

ΣzΣzΣz =



1 ρ11 ρ12 ρ12

ρ11 1 ρ12 ρ12

ρ12 ρ12 1 ρ22

ρ12 ρ12 ρ22 1


. (38)

where ρ12 is the between-observer decision variable correlation, and ρ11 and ρ22 are the within-observer

decision variable correlations. The maximum likelihood estimates of these parameters was given by

ρ̂11, ρ̂12, ρ̂22 = arg max
ρ11, ρ12, ρ22

∑
j

Nj logLj
4(ρ11, ρ12, ρ21). (39)
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In each of the two experiments, all three unique pairings of observers per experiment were analyzed, so that

three between-observers decision variable correlations were estimated for each condition of each experiment.

4.10.2 Between-observer fitting constraints

Constraints for quasi-quadruple between-observers analysis were similar to those for with-observer analysis.

First, disparity-discrimination thresholds used in normalization matrix M (see Eq. (37)) were set to values

obtained from linearly constrained threshold fits (see Eq. (7)). Second, the scaled partial correlation ρ12·W

between the luminance-driven and local-depth-driven components of the decision variable was constrained

to lie between -1 and 1. In particular,

−1 <
cov[S1,S2]
σE1σE2

< 1. (40)

4.11 Spatial integration

We examined whether the decision variable correlations that we observed might be due, at least in part, to

observers basing their responses on the disparity averaged over a fixed window size rather than the disparity

at the central pixel. We computed alternative decision variables for different spatial integration areas and

tested whether they provide improved ability to account for the observer responses and decision variable

correlations.

Throughout the article, we defined the disparity of the patch to be the disparity associated with the

central pixel. But there is no guarantee that human observers base their responses upon the disparity of

the central pixel alone. It is possible–perhaps, likely–that observers based their responses on the average

disparity within some spatial integration region. On this alternative hypothesis about how the task was

performed, we computed alternative decision variables as follows

Da =

∑
x

(
δcmp(x)− δstd(x)

)
wi(x)∑

x
wi(x)

, (41)

where the window w defines the area of spatial integration. We computed alternative decision variables for

pillbox-shaped windows having diameters from a four pixel diameter up to a 32 pixel diameter. For any

given alternative decision variable, the binary response predicted by the alternative decision variable value

is given directly by its sign. The ability of the alternative decision variable to predict the human responses
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was then assessed via a logistic regression model.

To setup the logistic regression model, the real-valued decision variables were used as the regressor for

the human binary responses. For each window-size, a single random effects model was used, conditioned

by disparity pedestal and disparity contrast conditions and observer. The coefficient of determination (R2)

was used to asses explanatory power of a given window size, and the Akaike information criterion (AIC)

was used to compare models and their significance. There is no evidence that the human data can be

better accounted for by a spatial integration area larger than that implicitly assumed throughout the main

analyses in the article.

5 Results

Three observers collected 20,000 trials each across two double-pass experiments, with the aim of determin-

ing how different types of natural stimulus variability—namely, variation in luminance-contrast patterns

and variation in local-depth variation—limit sensory-perceptual performance in a depth-from-disparity dis-

crimination task. Comparing performance between two appropriately designed double-pass experiments

enables one to dissect the limits placed on performance by distinct types of stimulus-driven uncertainty

versus the limits imposed by noise.

In each of the two double-pass experiments, psychometric data was collected with stimuli sampled

from scene locations with two different levels of local-depth variability. There were ten conditions total

in each experiment—five fixation disparities (i.e. disparity pedestals) crossed with the two levels of local-

depth variability (i.e. disparity-contrast; see Methods). In the first double-pass experiment, all stimuli

contained natural luminance-pattern variation and natural local-depth variation. In the second double-pass

experiment, "flattened" versions of the stimuli used in the first experiment were used such that local-depth

variation was eliminated while leaving luminance patterns essentially unaffected (see Fig. 1B).

To obtain the stimuli for the experiments, thousands of stereo-image patches were sampled from a

published dataset of stereo-photographs of the natural environment with co-registered laser-based distance

measurements at each pixel (Burge et al., 2016). Corresponding points were calculated directly from the

range data; a subset of corresponding points is shown in one example stereo-image (Fig. 1C). Sampled

patches were centered on corresponding points (Fig. 1D), with known amounts of fixation disparity at the

central pixel, as enforced by a custom stereo-image sampling procedure (A. V. Iyer & Burge, 2018). To

quantify local-depth variability (i.e. disparity-contrast), ground-truth disparities were computed at each

pixel directly from the distance measurements. The routines upon which the sampling procedures were
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Figure 1. Sources of uncertainty in stereo-depth perception, stereo-image database, and experimental
stimuli. A. The total variance of the decision variable—the variable that signal-detection-theory posits
that perceptual decisions are made on the basis of—is contributed to by at least two distinct sources of
uncertainty: external (e.g. stimulus-driven) variability σ2

E and internal noise σ2
I . The stimulus-driven

component can be decomposed into distinct external factors: here, luminance-driven variability σ2
L and

local-depth-driven variability σ2
B. In natural viewing, luminance-driven variability depends on how

luminance-contrast patterns vary across natural stimuli, and depth-driven variability depends on how
local-depth structure varies across natural scenes (see A and B). Traditional psychophysical methods can
determine the total variance of the decision variable. Double-pass experiments can partition the total
variance into externally- and internally- driven components. The new approach used here can further
partition the externally-driven component into distinct external factors. B. Two double-pass
disparity-discrimination experiments were conducted. Both used images from hundreds of the same
natural scene locations. Experiment 1 used stimuli with natural depth profiles (left). Local-depth
variation, as quantified by disparity-contrast (see Methods Eq. (1)), was either high (top row) or low
(bottom row). Experiment 2 used the same stimuli but with flattened versions of the natural depth
profiles (right). The flattened stimuli (right) had the same luminance profiles as the stimuli in
Experiment 1, but had no local-depth variation. C. Example natural stereo-image from which natural
stimuli were sampled for the experiments, with corresponding points overlaid in yellow. Corresponding
points were calculated directly from laser-range-based ground-truth distance data at each pixel. Points in
one image without a valid corresponding point in the other (e.g. half-occluded scene regions) are colored
red. Divergently-fuse the left two images, or cross-fuse the right two images, to see the scene in stereo-3D.
D. Another example natural stereo-image with patches that were vetted for inclusion in the experimental
stimulus set (boxes; see Methods). For purposes of visualization, depicted patches are four times wider
(4×4°) than those used in the actual experiments (1×1°).
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built were accurate with precision better than ±5 arcsec (A. V. Iyer & Burge, 2018). Hence, sampling

errors are smaller than human stereo-detection thresholds for all but the very most sensitive conditions

(Blakemore, 1970; Cormack et al., 1991).

Stimuli were presented using a two-interval, two-alternative forced choice (2AFC) design (Fig. 2A). The

task was to indicate, with a key-press, which of two natural stereo-image patches, appeared to be farther

behind the screen. On each trial, we assume that disparity estimates are obtained for the standard and

comparison stimuli: δstd and δcmp, respectively. Each of these estimates is affected both by properties of

the standard and comparison stimuli, and by noise. The decision variable is then obtained by subtracting

the standard disparity estimate from the comparison disparity estimates. Distributions of these disparity

estimate and decision variable distributions are shown in Figure 2B.

5.1 Decision-variable correlation

The decision variable underlying performance is given by

D = V +W, (42)

where V is captures the effect of externally-driven, stimulus-based variability and W is a sample of internal

noise.

The double-pass experimental design, like a typical (single-pass) experimental design, allows one to

estimate the variance of the decision variable. Assuming conditional independence, the total variance of

the decision variable is given by

σ2
T =σ2

E + σ2
I , (43)

where σ2
E is the variance of the externally-driven component and σ2

I is the variance of the internally-driven

component. The total variance of the decision variable can be computed directly from the discrimination

threshold (Fig. 2B-C). Specifically, for a certain definition of threshold-level performance (i.e. d′ = 1.0),

which we use here, the total variance of the decision variable simply equals the square of the discrimination

threshold (i.e. σ2
T = T 2; see Methods Eq. (5)).

The double-pass experimental design, more uniquely, allows one to estimate decision-variable correlation

(Fig. 2D-F). decision-variable correlation indicates the degree to which the trial-by-trial values of the
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Figure 2. Double-pass experimental design. A. Each pass of a double-pass experiment is composed of a
large number of unique trials, presented one time each. Each trial is composed of a unique pair of natural
stimuli. Trials are identical between passes. The task on each trial is to indicate which of two dichoptically
presented stimuli appears to be farther behind the screen. B. Standard and comparison disparity estimate
distributions for each of three comparison disparity levels (left), and corresponding decision variable
distributions. Each decision variable distribution is obtained simply by subtracting the standard disparity
estimate from the comparison disparity estimate on each trial (right). C. Psychometric data for
stereo-depth discrimination with fitted cumulative Gaussian curve, collapsed across both passes of a
double-pass experiment. Thresholds or standard deviation of the decision variable are estimated from the
variance parameter of the curve. Psychometric data is binary, indicating whether the comparison stimulus
was chosen (+) or not (−). Different decision-variable distributions (B) underlie performance at each
point on the psychometric function. D. Distribution of joint decision variable (ellipses) and samples (dots)
across both passes of a double-pass experiment. Samples in each of the four different quadrants will yield
one of four possible joint responses across passes (−−,−+,+−,++), two of which indicate agreement
(++ and −−). Decision-variable correlations larger than 0.0 evince shared sources of response variability
across passes. Dashed ellipse shows joint decision-variable distribution if observer responded completely
by chance (correlation of zero). E. Histograms show the expected proportion of each of the four joint
response types for the joint-decision-variable distribution shown in B. F. Proportion of between-pass
agreement as a function of proportion comparison chosen. Solid line shows best fit to the data. Dashed
line shows expected agreement if the observer responded completely by chance (correlation of zero).
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decision variable are correlated across passes. It is given by

ρ =
σ2
E

σ2
T

, (44)

being equal to the proportion of total variability in the decision variable that is due to factors that are

common across repeated presentations of the same trial (e.g. external stimulus variability) versus those that

are not (e.g. internal noise). decision-variable correlation is estimated from the repeatability of observer

responses across passes (Fig. 2D-E; see below). On each trial of each pass, the observer reports either that

the comparison stimulus appeared farther away than the standard stimulus (+), or that the comparison

stimulus appears closer than the standard stimulus (−). Upon completion of both passes, the observer will

have made a particular joint response on each unique trial, out of four possible joint responses (−−,−+,

+−, ++). When decision-variable correlation equals zero—as it will be when noise is the only source of

variability in the decision variable—response agreement is expected to be at chance levels (see Fig. 2D-F,

dashed lines). When decision-variable correlation is high—as it will be when external factors (e.g. nuisance

stimulus variability) are the dominant source of variance in the decision variable—response agreement is

expected to be high.

Decision-variable correlation, like other important quantities in signal detection theory (e.g. d′), must

be estimated from a set of binary observer responses (Fig. 2D-F). We computed how repeatable observers’

responses were (i.e. how often observer responses agreed) across the repeated presentations of the same

stimuli in the first and second passes of the double-pass experiment (see Fig. 2 and Methods). From

the level of response agreement in a given condition, we used maximum likelihood techniques to estimate

decision-variable correlation across passes.

Decision-variable correlations reflect the relative contributions of each individual source of variability in

the decision variable (Eq. (42)). A change in decision-variable correlation between conditions could result

from an increase in one source of variability, a decrease in the other, or a combination of both. Discrimination

thresholds provide an absolute measure of the total variance in the decision variable. But they do not

indicate the relative contribution of external (e.g. stimulus-driven) and internal (e.g. noise-driven) sources

of variability (Eq. (43)). Together, discrimination thresholds and decision-variable correlation can be used

to determine the absolute contribution of stimulus-driven and internal-noise-driven sources of variability to

the decision variable (see Eqs. (10) and (18)). From estimates of decision-variable correlation (Eq. (44)) and

of the total variance of the decision variable (Eq. (43)), the variances of the externally- and internally-driven

components of the decision variable can be computed (see Methods, and below).
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5.2 Experiment 1: Natural stimuli with natural depth profiles

Figure 3 shows raw data from one individual observer in the first double-pass experiment which used

stimuli having natural luminance and natural depth profiles. Psychometric data and function fits showing

proportion comparison chosen are presented in Figure 3A. The slopes of the psychometric functions decrease

systematically both as disparity-contrast increases from low to high (top vs. bottom), and as disparity

pedestal increases (psychometric functions, left to right). These patterns show that, as the surfaces to be

discriminated become more non-uniform in depth (i.e. have higher disparity-contrast), and as they move

farther from the fixated distance, discrimination thresholds increase.

Response agreement data and fits for the same observer are shown in Figure 3B. The correspond-

ing estimates of decision-variable correlation in each condition are indicated at the top of each subplot.

In all conditions, response agreement is systematically higher than expected under the assumption that

decision-variable correlation equals 0.0. Indeed, decision-variable correlation is approximately equal to 0.5,

on average across the conditions. Thus, the relative contributions of externally- and internally-driven com-

ponents to the variance of the decision variable are similar (i.e. σ2
E ≈ σ2

I ; see Eqs. (43) and (44)). External

and internal sources limit performance near-equally. Further, decision-variable correlation is always higher

in the high than in the low disparity-contrast conditions (see the inset values of ρ in each subplot). The

increase in decision-variable correlation with the level of disparity-contrast entails that the threshold in-

creases are due to more substantial increases in the variance of the stimulus-driven than of the noise-driven

component of the decision variable.

Figure 4A shows how stereo-based depth discrimination thresholds change with fixation error (i.e. dis-

parity pedestal) and local-depth variability (i.e. disparity-contrast) for each individual observer, and the

observer average. For both disparity-contrast conditions, discrimination thresholds are well-characterized

by an exponential function, the signature of which is a straight line on a semi-log plot. This exponential rise

in discrimination threshold with pedestal disparity is a classic empirical finding (Blakemore, 1970; Cormack

et al., 1991; Badcock & Schor, 1985; McKee et al., 1990; S. B. Stevenson et al., 1992), and is predicted by

a normative image-computable model of optimal disparity estimation with natural stereo-images (Burge

& Geisler, 2014). The current result provides a psychophysical demonstration that the classic exponential

law of human disparity discrimination generalizes to natural stimuli. Because this pattern is robust to the

particular stimuli that are used to probe performance, it should be thought of as a feature of how the visual

system processes disparity, rather than a consequence of the particular stimuli used to probe performance.

Discrimination thresholds are also higher for stimuli with high disparity-contrast than they are for
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Figure 3. Discrimination thresholds, response agreement, and estimates of decision-variable correlation
results for one observer. A. Response data (points) and psychometric curves for each condition.
Thresholds increase systematically with disparity pedestal and with disparity-contrast. B. Human
response agreement and fitted agreement curves for each condition. Thresholds and decision-variable
correlation was used to determine relative impact between sources of performance variability.
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Figure 4. Experiment 1 discrimination thresholds and decision-variable correlations. Stimuli in
Experiment 1 stimuli had naturally varying local-depth variation. A. Discrimination thresholds as a
function of disparity pedestals, for different disparity-contrast levels (shades), for each observer and the
observer average (columns). For individual observers, shaded regions indicate 68% confidence intervals for
each condition, generated from 10,000 bootstrapped datasets. For the observer average, shaded regions
indicate across-observer standard deviations. Lines represent exponential fits to the data in each
disparity-contrast condition (see Methods). Discrimination thresholds are equal to the square-root of the
total variance of the decision variable (see Eq. (5)). B. Histogram of threshold differences in the high and
low disparity-contrast conditions, collapsed across disparity pedestal and individual observers. Curves
indicate best-fit normal distributions to the data. C. Estimated decision-variable correlation in the same
conditions for each observer and the observer average. D. Histogram of differences in
decision-variable-correlation differences between the high and low disparity-contrast conditions, collapsed
across disparity pedestal and individual observers.
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stimuli with low disparity-contrast. Hence, local-depth variability harms depth discrimination performance.

As disparity-contrast increases, thresholds shift vertically in the semi-log plots, such that the two sets

of thresholds are parallel to another, indicating that the threshold increases with disparity-contrast are

multiplicative. Figure 4B visualizes these threshold differences as a histogram, collapsed across all disparity

pedestals and observers. Clearly, the histogram of threshold differences is substantially shifted to the right

of zero, which confirms that thresholds increase with disparity constraint.

The fact that disparity-contrast degrades discrimination performance should surprise nobody (Banks,

2004; Nienborg et al., 2004; Tyler, 1974; Westheimer, 1979). Increased local-depth variability entails that

the left- and right-eye images have more local differences between them. These more pronounced local

differences make the stereo-correspondence problem more difficult to solve. The increased difficulty in

solving the correspondence problem should, in turn, make stereo-based depth discrimination more difficult.

This increase in difficulty is what we observe in our results. However, as we will see, this unsurprising

degradation in discrimination performance with disparity-contrast is partly due to a surprising underlying

cause (see below).

Decision-variable correlations in each condition for each observer, and for the observer average are shown

in Figure 4C. In each and every condition, decision-variable correlation is higher in the high disparity-

contrast condition than in the low disparity-contrast condition (Fig. 4D). This consistent pattern of results

indicates that as disparity-contrast increases and the task becomes harder, there is an increase in the

proportional impact of external, stimulus-driven components on the decision variable—that is, observer

responses become more repeatable, not less.

The externally- and internally-driven contributions to threshold were computed from the estimates of

decision-variable correlation and the total variance of the decision variables (i.e. discrimination-thresholds

squared (see Eqs. (18) and (19)), and are shown in Figure 5. As with the discrimination thresholds (see

Fig. 4A)—which reflect the total variance of the decision variable—these individual components also tend

to increase exponentially with disparity pedestal (i.e. linearly on semi-log axes; see Fig. 5A). However,

disparity-contrast impacts these two components differently. The variance of the external component scales

with disparity-contrast (Fig. 5A top row), and substantially so, whereas the variance of the internally-driven

component changes more modestly (Fig. 5A bottom row). Thus, the increase in discrimination thresholds

with disparity-contrast can be attributed primarily to increases in the variance of the externally-driven (i.e.

stimulus-driven) component of the decision variable. The histograms in Figure 5B emphasize this point.

They show histograms of the difference in variance between the high and low disparity-contrast conditions
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in each component, across all observers and disparity pedestals. Clearly, the effect of disparity-contrast on

the externally-driven component is more pronounced than the effect on the internally-driven component.

As noted, the fact that discrimination thresholds increase with local-depth variability is to be expected

(Banks, 2004). What is unexpected is that a substantial portion of the threshold increases are attributable

to factors that make responses more repeatable on successive presentations of the same stimulus. The

implication is that, in natural scenes, local-depth variability does not simply make disparity-based depth

discrimination noisier, as might be expected if local-depth variability simply made the binocular match-

ing process more unreliable. Rather, the results suggest that local-depth variability biases the observer,

stimulus-by-stimulus, to perceive more or less depth in a manner that is repeatable across repeated stimu-

lus presentations. The results therefore imply that, at least in principle, observer errors on each individual

stimulus should be predictable. Developing image-computable models that enable stimulus-by-stimulus

prediction of depth estimation performance in depth-varying natural scenes is an interesting direction for

future work (Burge, 2020).

One potential source of observer repeatable error was that observers were not making disparity estimates

based on the very most central pixels of each stimulus. Instead, observers could have been averaging

disparities within a window of spatial integration. We investigated this possibility using logistic regression

(see Methods), by asking whether disparities averaged within spatial integration windows of fixed size,

across a range of sizes, could better account for the observer responses than the disparities associated

with the central pixel of each patch. We found that all window sizes accounted for the data equally well.

Changing the size of the spatial integration window produced no improved ability to account for explainable

variance (R2). And the Akaike information criterion (AIC) indicated that none of tested spatial integration

window sizes produced a significantly better account of the data than the smallest window size that was

implicitly assumed throughout the rest of the paper.

Another way to investigate the degree to which stimulus-based variability is predictable is to examine

between-observer performance similarities. We assessed whether between-observer-threshold variability is

more attributable to differences in the effect of external factors (e.g. stimulus-based variability) or internal

factors (e.g. noise) across observers. Figure 6 shows how the external, stimulus-based and internal, noise-

based contributions to threshold vary across observers relative to the between-observer mean. Between-

observer variation in the externally driven-component of the decision variable is substantially smaller than

in the internally-driven component (Fig. 6). The stimulus-driven component of the decision variable is very

similar across human observers, and does not contribute substantially to between-observer differences in
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Figure 5. External stimulus-driven and internal noise-driven contributions to thresholds in Experiment
1. A. Estimated external stimulus-driven (top row) and internal stimulus-driven (bottom row)
contributions to threshold, at all disparity and disparity-contrast conditions, for each observer and the
observer average. For observers, bounds of shaded regions indicate 68% confidence intervals for each
condition, generated from 10,000 bootstrapped samples. For the observer average, bounds indicate
standard deviations. Threshold contribution reflects the variances σ2

E and σ2
I of the stimulus-driven and

internal noise-driven components of the decision variable, respectively (see Methods). B. Histograms of
differences between high and low disparity-contrast conditions for both externally- and internally-driven
components (top row and bottom row respectively).

discrimination threshold. Because the external drive to the decision variable is consistent across observers,

it implies that the stimulus-specific computations performed by the human visual system are stable across

observers (also see below). Hence, between-observer variability is primarily due to differences in internal

noise.

5.3 Experiment 2: Natural stimuli with flattened depth profiles

The second double-pass experiment made use of natural stimuli having "flattened" depth profiles (see Fig.

1B). The luminance profiles of these stimuli are essentially unchanged from those in the first experiment,

because they were derived from the exact same scene locations, but the disparity-contrasts of all stimuli

were set equal to zero. Thus, in Experiment 2, the nominal "high disparity-contrast" and "low disparity-

contrast" stimuli had zero disparity-contrast, even though the luminance profiles were drawn from scene

regions originally associated with high and low levels of local-depth variability.

The primary aim of the second double-pass experiment is to make it possible to partition the effects

of variation in natural luminance contrast patterns and local-depth variation in limiting stereo-depth dis-

crimination. Doing so requires analyzing the data from both experiments simultaneously. Before turning

to this joint analysis of the psychophysical data from both double-pass experiments, we first present the
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Figure 6. Between-observer variability is primarily attributable to differences in internal noise.
Observer-mean subtracted estimates of externally-driven σ2
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components of the decision variable, histogrammed across conditions. Black lines represent best-fit normal
distributions. Across the high and low disparity-contrast conditions, the fraction of between-observer
variance explained by the internally-driven component for Experiment 1 was 0.81 (p = 2.0× 10−4,
F = 0.23 where F is the test statistic of a two-sample F-test).

results of the second experiment on their own.

Figure 7 shows discrimination thresholds (i.e. the square-root of the total variance of the decision vari-

able), and decision-variable correlations across all conditions in Experiment 2, for each individual observer

and the observer average. There is one marked change in the patterns in the data as compared to the

first experiment. Discrimination thresholds (Fig. 7A-B) and decision-variable correlations (Fig. 7C-D)

are now largely unaffected by nominal disparity-contrast. There are also consistent decreases in thresh-

olds and decision-variable correlations, as compared to Experiment 1 (see Fig. 4). These results imply

that a source of stimulus-driven variance in the decision variable that increases response agreements across

repeated stimulus presentations, has been removed from the stimuli.

Analysis of the external (stimulus-driven) and internal (noise-driven) contributions to threshold lead one

to the same conclusion: flattening the stimuli removes a stimulus-driven source of variance in the decision

variable that is due to local-depth variability (Fig. 8). Neither the external drive to threshold (Fig. 8, top

row), nor the internal drive to threshold (Fig. 8, bottom row), is affected by nominal disparity-contrast.

Of course, this change in the pattern of results makes sense. The "high disparity-contrast" and "low

disparity-contrast" stimuli in Experiment 2 had been associated with depth varying regions of natural scenes

in Experiment 1, but they were flattened for the current experiment. So the result is not unexpected. But it

is also not guaranteed. The effect of natural depth variability in bumpier (higher disparity-contrast) scene

regions on the decision variable could have been correlated with the effect of natural luminance contrast

patterns such that, even with flattened stimuli, the luminance profiles associated with the high disparity-

contrast regions of the scene would have generated higher discrimination thresholds. That is, luminance

profiles associated with scene locations having greater local-depth variability could themselves have been
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Figure 7. Experiment 2 disparity discrimination thresholds and decision-variable correlation.
Experiment 2 stimuli were flattened (i.e. had zero local-depth variability), but otherwise had the same
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disparity pedestal, for different disparity-contrast levels (shades), for each observer and the observer
average (columns). Unlike in Experiment 1, there is little to no effect of nominal disparity-contrast on
threshold. For individual observers, shaded regions indicate 68% confidence intervals for each condition,
generated from 10,000 bootstrapped datasets. For the observer average, shaded regions indicate standard
deviations. Solid lines represent exponential fits to the data. Dotted lines represent the exponential fits to
the threshold data from Experiment 1 (see Fig. 5A). B. Histogram of threshold differences in the high
and low disparity-contrast conditions, collapsed across disparity pedestal and individual observers. Curves
indicate best-fit normal distributions to the data. C. Estimated decision-variable correlation in the same
conditions for each observer and the observer average. Decision-variable correlations are systematically
lower than those in Experiment 1 (see Fig. 4). D. Histogram of decision-variable-correlation differences in
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Figure 8. External stimulus-driven and internal noise-driven contributions to thresholds in Experiment
2. A. Estimated external stimulus-driven (top row) and internal stimulus-driven (bottom row)
contributions to threshold, at all disparity and disparity-contrast conditions, for each observer and the
observer average. For observers, bounds of shaded regions indicate 68% confidence intervals for each
condition, generated from 10,000 bootstrapped samples. For the observer average, bounds inidcate
across-observer standard-deviations. Threshold contribution reflects the variances σ2

E and σ2
I of the

stimulus-driven and internal noise-driven components of the decision variable, respectively (see Methods).
Note that, in comparison to the results of Experiment 1, there is hardly any effect of disparity-contrast on
the stimulus-driven contributions to threshold. B. Histograms of differences between high and low
disparity-contrast conditions for both externally- and internally-driven components (top row and bottom
row respectively).

more difficult to discriminate, even after stimulus-flattening. The current results suggest that this is not

the case.

Because of the fact that, in the first double-pass experiment, high disparity-contrast stimuli yielded high

levels of externally-driven variance in the decision variable and low disparity-contrast stimuli yielded lower

levels of externally-driven variance (see Fig. 5A), the current results strongly imply that a stimulus-driven,

and repeatable, source of variability has been removed from the decision variable. The flattened stimuli of

the second double-pass experiment also yield the lowest levels of externally-driven variability in the decision

variable. Together, these results imply that stimulus flattening removes a distinct source of variability to

the decision variable. This idea is tested more rigorously below.

5.4 Partitioning sources of variability in natural stimuli

Here, we show that stimulus-driven variability in the decision variable can be partitioned into separate

factors that depend on natural luminance and natural depth structure. These sources of variability—

natural luminance structure and natural depth structure—have distinct and largely separable effects on

human performance. To determine the importance of these two factors, and to test whether these factors
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interact, we compared human performance across the four passes of the two double-pass experiments with

flattened and natural stimuli. We refer to this comparative analysis as a quasi-quadruple-pass analysis (see

Methods). (Note that typical quadruple-pass experiments—to the extent that quadruple-pass experiments

are ever typical—present exactly the same stimuli across all four passes. Our experiments presented similar,

but not identical, stimuli across the four passes of the two double-pass experiments, hence the "quasi-

quadruple-pass" moniker.)

Luminance-contrast pattern variability was essentially the same in both double-pass experiments, and

was thus the same across all four passes. However, because the second double-pass experiment used flat-

tened stimuli—which prevents local-depth variability from directly influencing the variance of the decision

variable—natural luminance variation is the only remaining stimulus factor that can contribute to the de-

cision variable because natural depth variability has been eliminated. The quasi-quadruple-pass analysis

allows one to determine how these two factors combine and/or interact to limit performance.

To understand the reasoning behind the quasi-quadruple-pass analysis, it is useful to write out expanded

expressions for the decision variable (also see Eq. (42) above). The expanded expression for the decision

variable is given by

D =

V︷ ︸︸ ︷
(L+B)+W, (45)

where L and B are luminance profile driven and local-depth-variability driven contributions to the decision

variable (which sum to the total stimulus-driven contribution V ), and W is a sample of internal noise.

In the double-pass experiment with natural luminance and depth profiles (Exp. 1), the expressions for

the total variance of the decision variable and for decision-variable correlation across passes, in terms of the

variance of these newly articulated components (i.e. L and B in Eq. (45)), are given by

σ2
T∗ =

σ2
E∗︷ ︸︸ ︷

(σ2
L + σ2

B + 2cov[L,B]︸ ︷︷ ︸
unknowns

)+σ2
I∗ , (46)

ρ∗∗ =
σ2
E∗

σ2
T∗

=
σ2
E∗

σ2
E∗

+ σ2
I∗

, (47)

where σ2
L and σ2

B are the variances of the components driven by luminance profile and local-depth variability,

the interaction term cov[L,B] is the covariance between them (if it exists), σ2
E∗

is the external (stimulus-

38



driven) variance, and σ2
I∗

is the variance of internal noise. The external stimulus-driven- and internal

noise-driven variances can be solved from the equations for total variance and decision-variable correlation

(Eqs. (46) and (47)). But there are not enough equations to separately determine the values of the three

unknown factors: the variance σ2
L of component driven by luminance-pattern variability, the variance σ2

B

of component driven by local-depth variability, and the covariance cov[L,B] between the luminance and

depth driven components. Fortunately, the second double-pass experiment allows one of these unknown

factors—the variance of the luminance-driven component of the decision variable—to be determined.

In the second double-pass experiment with natural luminance profiles and flattened depth profiles (Exp.

2), the expanded expression for the decision variable is given by

D =

V︷ ︸︸ ︷
(L )+W. (48)

Note that the disparity-contrast driven component B that is present in the first experiment does not

appear in Eq. (48), because disparity-contrasts were set equal to zero when the stimuli were flattened. The

corresponding expressions for the variance of the decision variable, and decision-variable correlation, are

given simply by

σ2
T † =

σ2
E†︷ ︸︸ ︷

(σ2
L )+σ2

I†, (49)

ρ†† =
σ2
E†

σ2
T †

=
σ2
E†

σ2
E† + σ2

I†
, (50)

where, again, σ2
L is the luminance profile driven variance, σ2

E† is the external stimulus-driven variance,

and σ2
I† is the internal-noise-driven variance associated with the flattened stimuli. Just as before, the

external and internal variances can be estimated from Equations 49 and 50. Now, the variance of the

luminance-pattern-driven component σ2
L is easily obtained because it exactly equals the variance of the

externally-driven component. Also note that in this experiment, because local-depth variability is absent,

the variance of the disparity-contrast-driven component is zero. But there are still two remaining unknowns.

Here is where the quasi-quadruple-pass analysis proves useful. By computing decision-variable cor-

relation across passes of the two different double-pass experiments, an additional equation is obtained.
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Decision-variable correlation between passes across experiments is given by

ρ†∗ =
σ2
L + cov[L,B]

σT † σT∗
. (51)

With this expression, we now have the number of equations necessary to determine the unknowns. Using

maximum likelihood techniques, we fit all three decision-variable correlations (ρ̂††, ρ̂∗∗, and ρ̂†∗) simul-

taneously from the data in both experiments with the quasi-quadruple-pass analysis (see Eq. (28)), and

then solved algebraically the system of equations specified by Eqs. (46), (47) and (49) to (51) for the un-

known parameters. This approach guarantees that shared factors between equations are consistent with

one another.

Before proceeding to the main results, we briefly note that we have already estimated decision-variable

correlation across passes in the first experiment and in the second experiment—ρ̂∗∗ and ρ̂††, respectively—,

in each case using data only from the respective experiment in isolation. When carrying out the quasi-

quadruple-pass analysis, the estimates of the within-experiment decision-variable correlations (i.e., ρ̂∗∗

and ρ̂††) and the variances of the externally- and internally-driven components (i.e., σ2
E and σ2

I ) are not

guaranteed to be the same as when they are estimated with the data from only one isolated experiment (see

Fig. 5 and 8. Reassuringly, however, the estimates from the quasi-quadruple-pass analysis are very similar

to those previously estimated. This consistency supports the claim that factors assumed to be common

to both experiments are in fact common to both experiments (see Fig. 9). The consistency which these

parameters vary across experiments and observers, suggests that each component of the decision variable

is indeed driven by the natural-image property—or a tight co-variate of the property—that is said to drive

it.
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Experiments 1 and 2 separately (see Figures 5 and 8) versus together with a quasi-quadruple pass
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(middle) and internally-driven factors (right), results are consistent regardless of the analytical approach.
The consistency of the results indicates the validity and robustness of the quasi-quadruple pass analysis.
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Figure 10 shows the recovered values of the luminance- and depth-driven components of the decision

variable—σ2
L and σ2

B, respectively—, and their interaction term cov[L,B], that were obtained from the

quasi-quadruple-pass analysis (see above; also see Methods). The variances of both the luminance-driven

and local-depth-driven components clearly increase with disparity pedestal for all conditions and observers.

This pattern is similar to the patterns in all previous plots. More interestingly, whereas the luminance-driven

component is very nearly unaffected by the level of disparity-contrast (Fig. 10A-B top row), the local-depth-

driven component has substantially higher variance with high than for with low disparity-contrast stimuli

(Fig. 10A-B bottom row).

These points are emphasized by histograms of the differences in the values of these components in the

low and high disparity-contrast conditions. Although the luminance-pattern-driven component is essentially

invariant to it (Fig. 10B), the local-depth-driven component changes substantially with disparity-contrast

(Fig. 10D). From these results we conclude that the variance of luminance-driven component of the decision

variable is a function of pedestal disparity but not disparity-contrast σ2
L(δstd), and that the local-depth-

driven component is a function of both factors σ2
B(δstd, Cδ), a finding that strongly suggests that the com-

ponents are not substantively affected by a potential common cause (e.g. local-depth variability). Overall,

these results support the conclusion that natural luminance-pattern variability and natural local-depth

variability in real-world scenes have separable effects on stereo-based depth discrimination performance.

Note that the value of the interaction term is near-zero for all conditions (Fig. 10C-D). Refitting the data

with a model that fixes the interaction term to zero yields estimates of σ2
L, σ

2
B, σ

2
I†
, and σ2

I∗
that are robust

to whether the constraint on the interaction term is imposed during fitting; any qualitative description that

applies to one set of fitted results applies to the other. Fits with and without the constraint also yield

near-identical log-likelihoods. Just as the fitted results are robust to whether data from the two double-

pass experiments are fit together (with the quasi-quadruple-pass analysis) or separately (see Fig. 9)), the

estimates of whether luminance-pattern- and local-depth-driven sources of variance do not covary with one

another.

One might have expected different results. A given scene location gives rise to the luminance patterns

in the left- and right-eye images, and to the pattern of binocular disparities between them. So, one might

predict that the effect of a given luminance contrast pattern (i.e. photographic content) would be tightly

correlated with the effect of the corresponding local-depth variation on disparity discrimination performance,

for the simple reason that they have a potential common cause: both are largely determined by the same

location in the scene. The current results show that this is not the case. Rather, the results strongly suggest
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Figure 10. Contributions of distinct stimulus-specific factors to thresholds, as revealed by the
quasi-quadruple-pass analysis. A. Contribution of luminance-contrast pattern variability (top) and
variability in local-depth structure (bottom) to threshold as a function of disparity pedestal at different
disparity-contrast levels (shades), for each observer and the observer average. For individual observers,
bounds of shaded regions indicate 68% confidence intervals for each condition, generated from 10,000
bootstrapped samples. For the observer average, bounds indicate across-observer standard-deviations. B.
Histogram of differences in luminance-pattern-driven and local-depth-driven threshold contributions across
high and low disparity-contrast conditions, collapsed across disparity pedestals and individual observers.
C. Same as A, but for the interaction term (i.e. cov[L,B]). Histogram of the interaction terms collapsed
across all disparity pedestals, disparity-contrasts, and individual observers is shown on the rightmost
y-axis of the third column (mean=-0.11, sd=0.23). D. Histogram of differences in the interaction term
(i.e. cov[L,B]) across high and low disparity-contrast conditions, collapsed across disparity pedestals and
individual observers. Data in C-D indicate that the interaction term is near-zero in all conditions.
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that each of these natural-stimulus-based sources of variability in the decision variable are near-independent

of one another.

5.5 Shared stimulus drive between observers

Earlier, we presented data showing that between-observer variability (i.e. threshold differences) was driven

more by observer-specific differences in internal noise than by observer-specific differences in stimulus-driven

variability (see Fig. 6). We speculated that this result was due to a high degree of similarity between the

computations that different humans use to extract useful information from each stimulus for the task. Here,

we present data from between-observers decision-variable correlations that bolster the case.

Between-observers decision-variable correlation quantifies the similarity of the decision variable in two

different observers across repeated presentations of the same stimuli. If different human observers are using

the same computations to estimate and discriminate stereo-defined depth from natural stimuli, stimulus-

by-stimulus disparity estimates from one human should be correlated with those from a second—that is,

between-observers decision-variable correlation will be substantially larger than zero (assuming internal

noise is not too large). On the other hand, if subjects are using quite different computations to process

stimuli, stimulus-by-stimulus estimates or trial-by-trial responses from one observer will provide no informa-

tion about estimates or responses from another, and between-subjects decision-variable correlation should

equal zero.

We computed between-observers decision-variable correlation from response agreement data by straight-

forward adaptation of the quasi-quadruple-pass analysis (see Methods). However, because between-observers

correlation is impacted by internal noise, its value does not transparently reflect the level of shared stimulus

drive. The partial correlation does. Partial correlation is given by

ρ12·W =
ρ12√
ρ11ρ22

=
cov[S1, S2]

σE1σE2
, (52)

where ρ12 is between-observers decision-variable correlation, ρ11 and ρ22 are the within-observer decision-

variable correlations, S1 and S2 are the stimulus-driven components of the decision variable that are shared

between the two observers, and σE1 and σE2 are the standard-deviations of the stimulus-driven components

of the decision variable in the two observers. This partial correlation provides more unvarnished information

about what we are most interested in, because it is unaffected by internal noise. It quantifies the level of

correlation in the stimulus-driven component of the decision variable between observers (see Methods).

Between-observers partial correlations are shown in Figure 11. Across all conditions and observer
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pairs, between-observers partial correlations are substantially above zero. In the high disparity-contrast

conditions of Experiment 1, which are the conditions in which local-depth variability has its largest effects,

between-observers partial correlations are 0.79 on average, with some values approaching the maximum

possible value (i.e. 1.0). In the low disparity-contrast conditions of Experiment 1, the average value is

0.59. In Experiment 2, the average partial correlations for the high and low disparity-contrast conditions

are 0.56 and 0.53, respectively (Fig. 11 bottom row). Histograms of the differences between the high- and

low-disparity-contrast conditions are shown in Figure 11B. And histograms of the raw values are shown in

Figure 11C.

These results indicate that the majority—and, in one case, the strong majority—of the stimulus-driven

component of the decision variable is shared between observers. That is, natural stimulus variability

associated with different stimuli having same the latent variable (i.e. disparity) causes similar stimulus-

by-stimulus over- and under-estimations of disparity-defined-depth in different humans. We conclude that

the deterministic computations that the human visual system performs on individual stimuli are largely

consistent across observers.

Chin and Burge (2020), in the the domain of speed discrimination, came to a similar conclusion using

a related approach. By comparing human performance to that of an image-computable ideal observer,

they found that differing levels of human inefficiency are near-exclusively attributable to different levels

of internal noise. Like the current findings, this finding entailed that the variance of the stimulus-driven

component of the decision variable is quite similar across different human observers, and is consistent

with the visual systems of different human observers performing the same deterministic computations on

the stimuli. The dovetailing evidence from the current study of disparity-based depth discrimination and

the previous study of speed discrimination suggest that natural stimulus variability (natural variation in

luminance pattern and/or depth-structure) has consistent effects on the visual systems of different human

observers. These results suggest that evolution has tightly honed the details of how visual systems compute

so that they extract the most useful task-relevant information from natural stimuli.
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Figure 11. Between-observer correlation in the stimulus-driven component of the decision variable, as
revealed by the quasi-quadruple-pass analysis. A. Estimated partial correlation values, controlling for (i.e.
removing) the affect of internal noise, between all observer pairs, for each experiment (rows), at all
disparity and disparity-contrast levels. Averages across observer-pairs are shown in column 4. With the
effect of internal noise removed, only the stimulus-driven component of the decision variable drives
between-observer correlation. For observer pairs, bounds of shaded regions indicate 95% confidence
intervals for each condition from 1,000 bootstrapped datasets. For the across-observer-pair average,
bounds of shaded region indicates across-pair standard deviations. B. Histogram of differences in partial
correlation across high- and low-disparity-contrast conditions shown in A, collapsed across disparity
pedestals and observer pairs. C. Histograms of the raw partial correlations for each observer pair in A. In
Experiment 1, the mean partial correlations are 0.79 and 0.59 in the high- and low-disparity-contrast
conditions, respectively. In Experiment 2, the values are 0.56 and 0.53. The majority of the
stimulus-driven variance is shared between observers.
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6 Discussion

In this article, using a natural-stimulus dataset, two double-pass experiments, and a series of analyses, we

investigated human stereo-depth discrimination in natural scenes, with specific emphasis on how natural-

stimulus variability limits performance. We sourced stimuli from a natural stereo-image database with

a constrained sampling procedure, and computed ground-truth disparities directly from laser-range data

at each pixel. Fixation (or pedestal) disparity, and local-depth variability—as quantified by disparity-

contrast—were tightly controlled. Luminance-contrast patterns and local-depth structures were allowed to

vary naturally across the hundreds of unique stimuli that were sampled for each condition.

We find that the exponential law of disparity discrimination holds for human vision in natural scenes.

We find that stimulus-driven variability and noise-driven variability have near-equal roles in setting these

thresholds, and that the stimulus-based sources of variability make responses more repeatable (and thus

potentially more predictable) across repeated stimulus-presentations. We find that one of two underlying

causes of the stimulus-driven variability is attributable to local-depth variation, multiplicatively increases

discrimination thresholds, and is largely separable from luminance-contrast-pattern variation. And we

find that different subjects make correlated stimulus-by-stimulus over- and under-estimations of disparity,

suggesting that the different human visual systems process individual natural stimuli with computations

that are largely the same.

The approach developed here extends the rigor and interpretability that has been integral to progress

in more traditional psychophysics and neuroscience experiments to more natural-stimulus sets Sebastian

et al., 2017; Chin and Burge, 2020; Ziemba et al., 2016. In the real world, perceptual, and behavioral

variability is driven by both external and internal factors. A comprehensive account of perceptual and

behavioral variability, and the neural activity underlying it, must identify and describe the impact of all

significant sources of performance-limiting variability. Encouragingly, the current results raise the prospect

that an appropriate image-computable model may, in principle, be able to predict a substantial proportion

of stimulus-by-stimulus variation across natural images.

6.1 Progress and limitations

Progress in science is often incremental. Many times, it occurs by way of relaxing one experimental design

element, while holding others fixed. We and others have investigated perceptual performance with stimuli

sampled from natural scenes—which are atypical of laboratory experiments—, while using conventional,

tightly controlled, laboratory tasks (Burge & Geisler, 2015; Sebastian et al., 2017; Chin & Burge, 2020;
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Ziemba et al., 2016). Others have investigated performance with atypical tasks (e.g. free viewing and

unconstrained eye-movements), while using conventional (e.g. Gabor) stimuli (Yates et al., 2023). Both

approaches have increased the ecological validity of the experimental conditions, and have provided new

insights into the properties of neural computations underlying sensory-perceptual performance. But there

are always limitations.

The stimuli used in the current experiments were foveally presented and subtended only 1° of visual

angle, the approximate size of foveal receptive fields in early visual cortex. Foveal presentation of spatially-

limited stimuli is common in psychophysical experiments, but doing so prevents the assessment of peripheral

visual processing or how performance is affected by the dynamic interplay between eye, head, and body

movements occurring in natural viewing. Limiting stimulus size to one degree also limits the degree to

which contextual effects can affect performance. In the context of this task, however, there was no evidence

that the visual system was spatially integrating over areas any larger than the very most central pixels of

each stimulus (see Resutls). Experiments—possibly with larger stimuli, that are specifically designed to

examine contextual effects could be an interesting topic for future work.

Related issues concern the two-alternative forced choice (2AFC) procedure used in the current experi-

ments. Although commonly employed, the rigid trial structure imposed by such designs is not well-aligned

with how perceptual estimates, perception-driven decisions, and perception-guided action are inter-related

in natural viewing. Alternative methods, such as continuous psychophysics, that more closely reflect the

continuous interplay of perception and action in natural viewing, could complement the current findings

(Bonnen et al., 2015; Chin & Burge, 2022; Burge & Cormack, 2020).

Despite these limitations, the current experiments showed that the natural variation of luminance-

contrast patterns and local-depth structures have large, distinct, and identifiable effects on performance.

Developing methods that guide the judicious choice of stimulus sets and tasks that strike an appropriate

balance between fully natural and tightly constrained, that are well-suited to available analytical methods,

and are well-matched to the specific research question under study, will be increasingly important as the

science becomes more focused on understanding how neurons respond and how perception works in the

natural environment.

6.2 Performance variation and prediction

An ultimate goal of perception science is to be able to predict, from an individual stimulus, the neural

activity and subsequent perceptual estimate, whether it will be accurate or inaccurate, and whether it will
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be reliable or unreliable. The degree to which this goal is achievable hinges on the degree to which the

stimulus-by-stimulus estimates are controlled by the properties of the stimulus, as opposed to noise. If the

strong majority of performance variation is noise-driven, such efforts will be futile. So, before undertaking

to develop and test models that make stimulus-by-stimulus predictions, it is prudent to demonstrate that

a substantial proportion of performance variation is stimulus driven. In the current stereo-depth discrim-

ination experiments, natural-stimulus-based sources of response variability account for approximately half

of all performance-limiting variability (see Fig. 4), a substantial proportion of which was shared across

observers (see Fig. 11).

However, while the stimuli—stereo-photographs of natural scenes—were allowed to vary naturally in

many respects, the mean luminance was fixed to a comfortable photopic level, and luminance-contrast was

set to the median contrast in natural scenes (see Methods) (A. Iyer & Burge, 2019; Frazor & Geisler, 2006).

Both properties are known to impact stereo-depth discrimination performance (Cormack et al., 1991), and

stimulus detection performance in general (Sebastian et al., 2017; Mueller, 1951; Nachmias & Sansbury,

1974; Legge & Foley, 1980; Burgess et al., 1981). Indeed, as mean-luminance and luminance-contrast

increase, neurons respond more vigorously, signal-to-noise ratios increase, and performance becomes more

reliable (Frazor & Geisler, 2006; Mante et al., 2005). Hence, if luminance and contrast had been allowed

to vary more naturally, the proportional contribution of stimulus-based factors to performance-limiting

variability is likely to increase. The current estimates of stimulus-based contributions to the decision

variable may therefore be underestimates of the total impact that stimulus-based factors would have in less

tightly controlled circumstances. This speculation is supported by the fact that between-observers partial

correlations are near the maximum possible values in the conditions in which natural stimulus variability

was highest (see Fig. 11).

The power of empirical datasets to help develop, constrain, and evaluate models can be improved

by presenting unique stimuli on each trial. Many models can yield similar predictions of performance if

only summary statistics (e.g. bias and precision) are used to evaluate the models’ successes and failures.

Image-computable models that predict decision-variable correlation and stimulus-by-stimulus estimates (or

discriminations), in addition to bias and/or precision, can provide increased power for evaluating hypotheses

about the neural activity and sensory-perceptual computations underlying performance (Burge, 2020; Chin

& Burge, 2020; Geisler, 2018).
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6.3 Noise and its impact on performance

In this article, we sought to partition the influence on performance of stimulus-driven from noise-driven vari-

ability, and to further partition the effects of two distinct types of natural-stimulus variability: luminance-

pattern and local-depth variability. We made no attempts to determine different potential sources of noise

(i.e. stimulus-independent sources variability), or to partition the influence of each on performance. As a

consequence, any source of variance that led to less repeatable responses in the current experiments con-

tributed to the estimate of noise variance. We conceptualized the noise as occurring at the level of the

decision variable. But there are multiple stages in the chain of events preceding perceptual estimatation,

both external and internal to the organism, where such variability could have originated and that would be

consistent with the results.

Variation due to noise could have occurred during the initial encoding of the retinal image, in early

visual cortex, at the decision stage (e.g. in the placement of the criterion), or a combination of these

possibilities. Potential sources of such variation include the noisy nature of light itself (Hecht, 1942),

random fixational errors (Ukwade et al., 2003), neural noise (Tomko & Crapper, 1974; Tolhurst et al.,

1983), and trial-sequential dependencies (Laming, 1979). Higher-level factors could also manifest as noise,

including stimulus-independent fluctuations in alertness, attention, or motivation (Lu & Dosher, 1998;

Mitchell et al., 2009; J. I. Gold & Ding, 2013; Zhang et al., 2018).

Experimental and computational methods that can determine the contribution of different types of

stimulus-independent sources of variation are of interest to systems neuroscience (Chin & Burge, 2020; Goris

et al., 2014). There are clear steps that could be taken to identify and account for some of these potential

sources of noise. Psychophysical methods have the potential to distinguish some of them. High-resolution

eye-tracking would allow one to condition performance on the fixational state of the eyes (Bowers et al.,

2019; S. Stevenson et al., 2016; Rucci & Poletti, 2015). Parametrically varying performance-contingent

reward can systematically alter motivational state (Zhang et al., 2018). But neurophysiological methods

would be required to identify and partition sources of noise internal to the nervous system that may arise at

various stages of the visual processing and perceptual decision making pipeline. Paradigms that blend the

advantages of the current approach for partitioning stimulus-based variation with neurophysiological and

computational methods for partitioning noise would be a useful way forward (Ziemba et al., 2016; Goris

et al., 2014; Charles & Pillow, 2018).
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6.4 External limits to human performance

Broadly construed, the current work continues in the tradition of the classic 1942 study of Hecht, Shlaer,

and Pirenne. Its two most widely appreciated results are that, when fully dark adapted, i) the absorption

of a single photon reliably elicits a response from a rod photoreceptor and ii) the absorption of five to

seven photons in a short period of time reliably causes a reportable sensation of the light. Slightly less

widely appreciated is the finding that the limits of the human ability to detect light (i.e. light detectability

thresholds) are attributable to the stochastic nature of light itself, a performance-limiting factor that is

external to the organism. On a given trial at a given stimulus intensity, whether or not subjects reported

that they had seen the stimulus depended near-exclusively on whether or not the requisite number of photons

had been absorbed. That is, if the numbers of photons in proximal stimulus was identical, humans would

respond identically. Performance was thus very tightly yoked to the variability of the external stimulus.

The results the current study suggest that, just as rod photoreceptors support performance in a very

similar manner across different human observers, the computational mechanisms supporting the estimation

and discrimination of depth in natural scenes are very similar across observers. In the current study,

we showed that stimulus-based limits to performance become increasingly important as stimuli become

ever more natural. If this pattern holds, it may that stimulus-based limits to performance are by far the

dominant factor as organisms engage with the natural environment. If true, image-computable models will

have the potential to achieve remarkable predictive power from analysis of the stimulus alone. Such models,

in which the underlying computations are made explicit, would have tremendous practical applications and

deepen our understanding of how vision works in the real world.
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